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Abstract

In an era of abundance of evolution in deep learning models due to the value it
provides and the massive increase in computation power due to GPUs and TPUs,
the by-product is the massive environmental damage it is doing, the training time, the
increasing demand for computation power, therefore, the increasing demand of very
powerful devices. More often than not, researchers emphasize more on the accuracy
of models rather than efficiency, resulting in carbon emissions of prolific proportions.
We came up with recurrent models that save massive amounts of computation units
with a bit of sacrifice in the accuracy so that it is much more efficient, can be used
across lightweight devices such as IOT, robots or mobile phones and require less
time. Recurrence was traditionally not used in image classification until recently.
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Chapter 1

Introduction

Popular consensus is that adding depth to neural network layers can increase and
enhance performances on hard problems. A lot of work has been done in image
classification to prove this statement. Some of the state-of-the-art models include
CoCa, Vit-e and ModelSoups (Basic-L) [1]]2][3]. All of the above require parameters
near 2000 million parameters. However, computation power and speed are a luxury
for a lot of people. Along with the time it requires to train. Not everyone has access
to expensive GPU or computational devices.

A neural architecture with 213 million parameters can lead to up to 626,155 carbon
emissions [4]. Commensurate to that, a state-of-the-art model with 2000 parameters
can lead to up to 10 times more carbon emission. This has furthermore led to a
prolific increase in energy consumption [5].

1.1 Problem Statement and Objectives

In this project, we, therefore, explore recurrent neural networks (REcurNets) [6].
RecurNets are organised to learn sequential or time-varying patterns. A recurrent
network is a neural network with feedback loops. [7]. RecurNets do not add any new
parameters to the neural network. This makes it not so apparent that performance
can be enhanced using recurrent iterations. In Figure 1.1, an example of a recurrent
neural network is given where h is the recurrent block that maintains and updates the
sequence as it is processed. We discuss RecurNets in detail in the model description.



Recurrent Neural Network

Figure 1.1: An example of a recurrent neural network

We will conduct the experiments with primarily two models, both of which are a
combination of convolutional neural networks, recurrent block and a linear layer.

The datasets we will run the experiments on are CIFAR-10, SVHN and MNIST. The
objectives we aim to achieve are as follows:

e Reduce parameters and ultimately computation units significantly with slightly
reduced accuracy for training to be faster, require low specification devices and
in less time.

e Test different recurrent neural network models by experimenting with different
iterations to classify images of the datasets mentioned.

e Evaluate the performance in terms of train and test accuracy, f-score, precision
and recall.

e Compare the performance of our models to state-of-the-art models and the
number of parameters.



1.2 Contributions

Throughout our work, the term depth will refer to the number of sequential lay-
ers. We will demonstrate that recurrent neural networks can show similar perfor-
mance without any additional parameters, ultimately reducing computation power.
With recurrent neural networks, we notice a substantial reduction in parameters.
The drawback to this is that the accuracy is slightly sacrificed as demonstrated
in our work. However, if one is willing to sacrifice the accuracy slightly, then
the benefit of the massive reduction in computation power and speed can be ac-
cessed. This opens up the possibility to train models in lower specification de-
vices such as a cheap PC and perhaps, on phones. We demonstrate two models
combined with convolutional neural networks (CNN), fully connected layers and
recurrent blocks that give us the answers to the problems stated. We also dis-
cuss the environmental impact our project can contribute to. Code to our project
can be found at https://github.com/thinkGrow /recurrent-neural-network-for-image-
classificatiom /tree /newBranch.

1.3 Outline of the Report

The report is broken down into several chapters. Firstly, we will look at related work
where we look at relevant literature work in convolutional neural networks, state-
of-the-art models for our datasets, recurrent neural networks and their application
in several fields and image classification. In the dataset section, we look at the
description of the datasets we use. Apart from that, in the model description section,
we look more in-depth at our models and recurrent neural networks. Added to
that, we look at the results and analyse them. In social and environmental impact,
including how modern neural networks are harming the environment and how our
work can reduce the damage to the environment and society in general. We then
conclude our work and include future scope for research.



Chapter 2

Related Work

In this chapter, we describe the existing state-of-the-art image classification models
along with relevant work in recurrent neural networks. These include VGG, Resnet,
ViT-H/14, WRN28-10 (SAM), Branching/Merging CNN + Homogeneous Vector
Capsules and some models for our specific dataset and the origin of Recurrent Neural
Networks. We further discuss recurrent neural networks in image classification.

2.1 VGG-16

VGG has had great success in image classification. With the increasing power of
GPU worldwide, the huge computation that VGG comes with is handled relatively
well. So performances are not sacrificed. The VGG-16, VGG with 16 layers consist
of approximately 125 million parameters, making it comparatively slower than re-
current. The architecture is fairly simple with 3*3 CNNS, stride=1, same padding
and 2*2 same maxpool [8].
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Figure 2.1: A typical VGG-16 architecture

2.2 ResNet

Deep Neural Networks are difficult to train because of vanishing gradients. ResNets
help us deal with the problem and help us work with very deep layers. Originally,
ResNets were trained with 152 layers which is significantly more than VGGs. [9]
This model won the 1st place on the ILSVRC 2015 classification task. This model
takes advantage of ”shortcut connections”. When a gated shortcut is “closed” (ap-
proaching zero), the layers in highway networks represent non-residual functions.
10]

2.3 ViT-H/14

The usage of transformers in image recognition is explored here. Vision Transformer
(ViT) attains excellent results compared to state-of-the-art convolutional networks
while requiring substantially fewer computational resources to train. This is currently
one of the state-of-the-art architectures for CIFAR-10 and other datasets. However,
it requires 632m parameters. [11]

11



2.4 WRN28-10 (SAM)

This model aims to not only optimise training loss but also minimise loss sharpness
using a technique called Sharpness-Awareness Minimization (SAM). Many neural
networks in this day and age can memorize any training data, and readily over-
fit. Only minimizing training loss is not enough to achieve satisfactory general-
ization. Sharpness-based measure has the highest correlation with generalization,
which motivates penalizing sharpness. For image classification from scratch, this
model achieved SOTA performance across several datasets. Particularly CIFAR-10
and SVHN, amongst which, lie our interest [12].

2.5 Branching/Merging CNN 4+ Homogeneous Vec-
tor Capsules

To handle the capsule dimensional entanglement that the matrix multiplication cre-
ates, the majority of capsule network designs rely on conventional matrix multipli-
cation between capsule layers and computationally costly routing techniques. The
dimensions of the capsules are kept unentangled by employing Homogeneous Vector
Capsules (HVCs), which multiply elements rather than matrices. In this study, it is
demonstrated that a simple convolutional neural network extended with HVC instead
of a fully connected layer gives us state-of-the-art performance for MNIST. HVCs are
less computationally demanding and simpler. Thus, it requires less power and time.
Zero-padding, weight decay and dropout regularization, max-pooling were avoided
due to the structure and overall straightforward simplicity of the dataset of MNIST.
Furthermore, standard categorical cross-entropy was used over reconstruction loss,
cutting off an additional 2.1m parameters [13].

In this study, a network architecture on a basic convolutional neural network and de-
fined design guidelines were built. Next, we proposed a system that employed homo-
geneous vector capsules instead of flattening to individual scalar neurons, branching
out of the sequence of stacked convolutions at different places to represent various
degrees of conceptualization with efficient fields of reception.

A lot of efforts were made to reduce parameters and provide efficient results. How-
ever, the parameters required were 1.5m, which is still a significant amount consid-
ering our recurrent neural network model as seen in Table 5.3.
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2.6 Recurrent Neural Network and its inclusion
in image classification

Because of the recent mass volume of data and resolution of the images, a new
demand was required to be met which meant the need for very high computation
units. Recently, very complex models have developed with good performance due to
the recent breakthrough in computation power due to the evolution of very powerful
GPUs and TPUs [14]. The designs of models in the 1990s had very few layers and
were not so deep. Modern ConvNets come with much deeper and wider layers with
improved accuracy [15] [16].

Recurrent neural networks have proven to be successful in several fields of applica-
tions. Some of them include natural language processing (NLP) [17] [18], machine
translation [19], speech recognition [20] [21], weather forecasting [22], human action
recognition [23], drug discovery [24], and so on. However, recurrent neural networks
used for image classification are still a fairly new concept and have much room for
improvement.

Although the performance is not as strong as the state-of-the-art for the datasets
we have chosen, the upside is we require much fewer parameters as seen in Table
5.1, 5.3, 5.2 starting from page 27. This means we do not require a computationally
powerful device or as much time to train. This is a significant advantage and an
economical choice given the drawbacks, that is sacrificing accuracy, does not affect
the requirements much.

Recent work regarding RecurNets being utilized in image classification shows that
even better performance can be gathered compared to our work. However, the pa-
rameters are 12 million, whereas our models are less than 1 million. The same paper
also worked on solving the maze problem using recurrence [25]. The paper ”Rethink-
ing Recurrent Neural Networks and Other Improvements for Image Classification”
[26] also experiments with RecurNets in image classification. In their work, they
include RecurNets as an additional layer when designing their models. Furthermore,
they progress with end-to-end multimodel ensembles that give predictions using sev-
eral models. Their work has achieved close performances to state-of-the-art models.
However, these experiments were done using a lot of resources, although less than
traditional models, much more than what we have worked with. RecurNets is also
seen to be used in hyperspectral [27], hierarchical [28] and multi-label [29] image
classification. It is evident, however, that a lot can be improved with the help of
RecurNets in the field of image classification.
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Chapter 3

Datasets

We have chosen 3 datasets to work with and we discussed and elaborated on the
datasets in this chapter. This is because the datasets are not too large and easier to
train, and are structured and clean data. Furthermore, these are extensively studied
have benchmarks available and are easier to compare due its familiarity.

The datasets we have used are all image datasets. They are as follows:
1. CIFAR-10
2. SVHN
3. MNIST

3.1 CIFAR-10

CIFAR-10 consists of a total of 60,000 colourful images. The pixel size is 32x32 with
10 variety of classes. The classes are as follows: aeroplane, automobile, bird, cat,
deer, frog, horse, ship and truck). Per class consists of 6000 images. The dataset

is divided into 50,000 train images and 10,000 test images. Some instances of the
CIFAR-10 dataset are shown in Fig. 3.1
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Figure 3.1: Sample of CIFAR-10 dataset
3.2 SVHN

SVHN is an image-based dataset based on real-life images with low requirements
for data processing and formatting. It incorporates a high level of labelled data
(over 600,000 digit images). Images are taken from Google Street for this particular
dataset.
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Figure 3.2: Sample of SVHN dataset

3.3 MNIST

The MNIST database (Modified National Institute of Standards and Technology)
database is a large database of handwritten digits that is commonly used for training
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The MNIST database contains 60,000 training

various image processing systems.
images and 10,000 testing images.
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Figure 3.3: Sample of MNIST dataset
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Chapter 4

RecurNet Model & Experiment
Design

In this chapter, We discuss the various RecurNet models used for our project along
with the parameters we used during this experimentation. We look at how we applied
recurrent blocks to a traditional convolutional neural network and how the inputs
and outputs occur.

4.1 Performance Metrics

The performance metrics used in this experiment are training accuracy, testing ac-
curacy, loss, precision, recall, and f-1 score.

4.2 RecurNet

A recurrent network is a neural network with feedback loops that connect sequential
data. In figure 4.1, A is denoted as the RecurNets block which maintains and updates
the temporal steps as the sequence is processed while x represents the input and h,
the output. A typical RecurNet block is mentioned in equation 4.2.

17



Figure 4.1: A recurrent block

h; is the hidden state at the time step.

x; is the input at time step

Wi are the weights and biases of the input-to-hidden layer, respectively.

bin, Whn, bu, are the weights and biases of the hidden-to-hidden layer, respectively.
Wi,y and by, are the weights and biases of the hidden-to-output layer, respectively.
y; is the output at time step t.

This represents a basic one-step forward pass of a recurrent neural network, where
the hidden state h; at time step t is computed based on the current input x; and the
previous hidden state h;_; and the output g, is computed based on the hidden state
hy.

ht = fw(xt, ht—l) (41)

ht = tanh(mhmt + bih + Whhht—l + bhh) (42)

A function of a feed-forward network is defined in equation 4.3 where x is the input
and y is the output. The layers of a neural network are defined as 1.

f(l’) = ln . ln —1-..... . 12 . ll (43)
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Each member of the set {li}le can be functions of linear or non-linear. The two
models we have used are in the form of equation 4.4.

f@)y=1l, .o lp+ 120 20 ool oo - () (4.4)

We let z.(z) =17 - ... lgz)(x) and call it a g-layer recurrent module. This is then
put in the beginning and the end of the layeers. 4.3 has an effective depth of n+zq,
where z is the quantity of loops of the rnn block. More detailed examples are shown
in figure 4.2 and figure 4.3.

4.3 Experiments

We have primarily focused on two main experiments to proceed with our experiment.
Both are a combination of convolutional neural networks with ReL.u, maxpool, re-
current block and a linear layer. For all the recurrent blocks, we experiment with
a variation of depth from 4 to 8. The significant difference is that we used two re-
current blocks in the second experiment and we changed the kernel for one of the
blocks. We mainly want to see if adding a recurrent block can replace traditional
CNNs Overall, the second experiment has given us better results.

The parameters used were the same across all experiments. The train batch size was
set to 128 while the test was set to 50. SGD Optimizer was used. The learning rate
was given as 0.01 with a scheduler that changed the learning rate every 50 epochs
with a learning rate factor of 0.1. ReLu is used to prevent the shrinking of gradients
x is greater than 0.

4.3.1 Experiment 1: One Recurrent Block

In experiment 1, we first input an image and pass it through 3 convolutional blocks.
On the 3rd block, we apply a recurrent block with varying depth. We then use a
maxpool to reduce the dimensions and add other convolutional and maxpool blocks.
In the end, we use a linear layer and get our label.

The kernel is set to 3x3 for all blocks. The stride is set to 1x1 for all convolutional
blocks. The padding is set to 1x1 for the convolutional blocks other than the last
one.

An overview of the model is shown in 4.2. A 3-D image is given as input. The blue

19



blocks are convolutional blocks along with ReLu, while the red block is maxpool.
The last block is the linear block with the final output. The block with an arrow
pointing towards itself is the recurrent block looping back to the block.

d2x3and2 D

azxazxdz G433z Ga4xdzndz B4x10x10 12BxExE

512x10

Figure 4.2: Experiment 1: One recurrent block

4.3.2 Experiment 2: Two Recurrent Blocks

In experiment 2, we first input an image and pass it through 3 convolutional blocks.
On the 3rd block, we apply a recurrent block with varying depth. We then use an-
other convolutional block and a max pool to reduce the dimensions and add another
recurrent block and maxpool block. Afterwards, the last convolutional and maxpool
blocks are used. At the end, we use a linear layer and get our label.

The kernel is set to 3x3 for all blocks except the second recurrent block with a kernel
of 5x5 and the last convolutional block with a kernel of 2x2. The stride is set to 1x1
for all convolutional blocks. The padding is set to 1x1 for the convolutional blocks
before the second recurrent block, which has a padding of 2x2.

An overview of the model is shown in 4.3. A 3-D image is given as input. The blue
blocks are convolutional blocks along with ReLu, while the red block is maxpool.
The last block is the linear block with the final output. The blocks with an arrow
pointing towards themselves are the recurrent blocks looping back to the respective
block.

Foskoodons

37 GADGE GAK3:NGZ  1ZEBM3DNEZ  128w16X16  1ZBX16X16 12855 1284x4 128K252

51210

Figure 4.3: Experiment Two : Two recurrent blocks
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Chapter 5

Results

In this chapter, we discuss the results we achieved from the experiments we covered
as described in the model description. Both experiments were done on all three
selected datasets: CIFAR-10, SVHN and MNIST. We also discuss various trends
we observed among the metrics we have recorded. These are accuracy, f-1 score,
precision, recall, depth and number of parameters used. Furthermore, we talk about
the runtime for training the model.

If we observe the data for test accuracy as shown in Figure 5.1 and 5.2, for the
CIFAR-10 dataset in experiment 1, depth 7 had the best accuracy while the second
best was depth 4. For experiment 2, however, depth 8 gave the best performance.

For the SVHN dataset, the differences between each depth are rather marginal, for
both experiments. Except for depth-4 in experiment-1 which underperformed, as
shown in Figure 5.3 and 5.4.

For the MNIST dataset, the differences between each depth are slimmer than the
ones observed in SVHN, for both experiments. And the accuracy achieved is above
98%, mostly being above 99%, which is close to achieving 100%, as shown in 5.5 and
5.6.

The trend amongst the other metrics are similar to the accuracy test as displayed.
For charts of all the metrics, refer to the Appendix chapter in page 39.

The runtime for most of the training was done in around 2 hours for Experiment-1.
Experiment-2 requires around 3-4 hours. The training was done in Google Colab

22



which has a limitation of 12 hours of training time in its free version, which is
sufficient to train our model since the parameters are very low.

accuracy_test

Figure 5.1: CIFAR-10: Test Accuracy (Architecture One)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8

23



Figure 5.2: CIFAR-10: Test Accuracy (Architecture Two)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8

Figure 5.3: SVHN: Test Accuracy (Architecture One)
Legend: Depth-4 Depth-5, Depth-6, Depth-7,

24



accuracy._test

Figure 5.4: SVHN: Test Accuracy (Architecture Two)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8

accuracy_test

Figure 5.5: MNIST: Test Accuracy (Architecture One)
Legend: Depth-4 Depth-5 Depth-6 Depth-7 Depth-8
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accuracy._test

Figure 5.6: MNIST: Test Accuracy (Architecture Two)
Depth-4 Depth-6 Depth-7 Depth-8

All of the metrics we observed are recorded and presented in the form of tables below.
From observing all the data, it is apparent from the choice of depth that did not
change the result much. It seemed to be rather arbitrary. However, sometimes a
random depth can underperform severely, as seen in SVHN for experiment-1 with
a depth of 4. As for experiment-1 of CIFAR-10, depths 4 and 7 outperformed the
other depths by a significant amount. This means that it is helpful to experiment
with different depths to make sure that we are getting the best results. See Table
5.1, 5.2, 5.3 for reference.

Experiment 2 overall outperformed Experiment 1 by a good margin. This to a
large extent seems to be due to the addition of another recurrent block. However,
this also means that the number of parameters has increased by approximately 5
times. The number of parameters for Experiment 2 was mostly around 0.611m while
for Experiment 1, was 0.136m. While this may seem like a consequential boost in
parameters, it is nothing compared to the parameters being utilized in the current
state-of-the-art for the CIFAR-10 (632m) and MNIST (1.5m).

The results show that adding an extra recurrent block boosted performance. This
could potentially open room for further experiments with enhanced results and still
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consequently use fewer parameters than what the current state-of-the-art models are

using.

Model

Depth

Parameter

Accuracy

F-1 Score

Precision

Recall

Experiment-1

4

0.136m

0.81

0.81

0.81

0.81

0.136m

0.72

0.73

0.79

0.73

0.136m

0.77

0.78

0.81

0.78

0.136m

0.82

0.82

0.83

0.82

0.136m

0.75

0.75

0.80

0.76

Experiment-2

0.611m

0.88

0.89

0.89

0.89

0.611m

0.89

0.89

0.89

0.89

0.611m

0.88

0.89

0.89

0.89

0.611m

0.82

0.82

0.83

0.82

Q0| | O T = | 00| J| O Tt

0.611m

0.87

0.88

0.88

0.88

ViT-H/14

632m

0.95

Table 5.1: CIFAR-10 depth 4-8 for both experiments

Model

Depth

Parameter

Accuracy

F-1 Score

Precision | Recall

Experiment-1

W

0.136m

0.81

0.81

0.81

0.81

0.136m

0.92

0.92

0.93

0.92

0.136m

0.92

0.92

0.92

0.92

0.136m

0.92

0.92

0.92

0.92

0.136m

0.92

0.92

0.92

0.92

Experiment-2

0.611m

0.93

0.94

0.94

0.94

0.611m

0.93

0.94

0.94

0.94

0.611m

0.93

0.93

0.93

0.93

0.611m

0.93

0.93

0.94

0.93

Q0| | O U = | 0O =J| O U

0.611m

0.93

0.93

0.93

0.93

WRN28-10 (SAM)

0.99

Table 5.2: SVHN depth 4-8 for both experiments
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Model Depth | Parameter | Accuracy | F-1 Score | Precision | Recall

Experiment-1 4 0.135m 0.98 0.99 0.99 0.99
5 0.135m 0.98 0.99 0.99 0.99
6 0.135m 0.98 0.99 0.99 0.99
7 0.135m 0.99 0.99 0.99 0.99
8 0.135m 0.99 0.99 0.99 0.99

Experiment-2 4 0.611m 0.99 0.99 0.99 0.99
5 0.611m 0.99 0.99 0.99 0.99
6 0.611m 0.99 0.99 0.99 0.99
7 0.611m 0.99 0.99 0.99 0.99
8 0.611m 0.99 0.99 0.99 0.99

Branching/Merging

CNN- + Homo- 1.5m 0.99

geneous Vector

Capsules

Table 5.3: MNIST depth 4-8 for both experiments
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Chapter 6

Social and Environmental Impact

In this chapter, we discuss the disadvantages of models with large parameters and
their impact on the environment and society. We looked at how this can be reduced
using our models.

Artificial intelligence (AI) showed promise in 2016 to overtake human intellect, six
decades after it was first introduced at the 1956 Dartmouth Conference [30]. This
was demonstrated when AlphaGo [31], a computer program, defeated a human Go
player with its highest score for the first time. This was a historic milestone in Al.

Deep neural networks (DNNs), the abundance of large data, and improvements in
computer technology have all contributed to the AI revolution. Because of this,
artificial intelligence (AI) technologies have advanced a wide range of fields, such
as computer vision [32], natural language processing (NLP) [33], healthcare [34],
manufacturing [35], and finance technology (FinTech) [36]. As a result, major global
economies like China, the US, and the EU have acknowledged Al as a national
strategic priority and it is quickly emerging as a vital engine of future productivity.

The bulk of academics focus on achieving new state-of-the-art (SOTA) outcomes in
the era of deep learning, particularly with the emergence of Large Language Models.
This has led to an increase in both model size and computational complexity. High
processing power requirements increase carbon emissions and compromise research
equity by excluding small and medium-sized research organizations and businesses
with tight budgets. Green computing is a popular area of study as a response to the
problems with AI’s impact on the environment and computer resources. We urge
more scientists to focus on this area and develop environmentally friendly Al
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This tendency is best shown by large language models (LLMs), such as ChatGPT
[37], but their use presents serious ethical and environmental [38, 39] issues. Due to
the high processing power requirements of these systems, energy consumption and
greenhouse gas emissions are increasing [40].

Gebreuetal’s 2020 seminal paper on the risks of LLMs already discussed the careful
collection of datasets taking in the environmental and the economical aspect [39].

Accuracy is valued more highly by researchers than efficiency. Approximately 75%
of the publications report accuracy-related indicators rather than efficiency-related
ones. This finding suggests that efficiency-based performance, such as execution
time, model size, etc., is disregarded in favour of performance metrics like accuracy,
which are the focus of the research community’s shared interests [41].

Common carbon footprint benchmarks
in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF (1

passenger) | 1,984
Human life (avg. 1 year) I 11,023
American life (avg. 1 year) - 36,156

US car including fuel (avg. 1 lifetime) ERIXIN]
Transformer (213M parameters) w/
neural architecture search 626185

Figure 6.1: Carbon footprint benchmarks. Chart MIT Technology Review and source
[4].

”Greenness” is significantly influenced by model size. Therefore, while model size
might partially reflect the ”greenness” of the algorithm, it is unable to capture the
influence of variables like data volume, training iterations, and other facets of the
model’s training and inference process.

Some classical neural network models of deep learning, like LeNet, VGG, GooogleNet,
etc., have shown to be fairly good at image classification, target detection, and other
AT tasks. However, these models have several obvious limitations, involve a lot of
arguments, and necessitate redundant computation. Certain real-world scenarios
using lightweight devices—such as autonomous cars, robotics, identification tasks,
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etc.—are challenging to implement and must be completed on schedule.

If we look at one of the state-of-the-art models for CIFAR-10 [11], the parameters
are 632m, while our recurrent models do not even exceed a million. Considering the
green revolution, our model is exponentially better at reducing extremely significant
carbon emissions while sacrificing a bit of accuracy.
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Chapter 7

Conclusion

This chapter concludes the study by summarising key findings concerning the prob-
lem stated, as well as the value it will provide. It will also review the study’s
limitations and the scope for future research.

We find that recurrent neural networks can be used as an alternative to traditional
convolutional depth with its feedback loop which we can alternatively use as depth.
Not only that, this reduces the parameters significantly. However, using recurrent
neural networks in our models reduces the accuracy. On a positive note, however, this
means we can train our data in significantly less time, with less powerful devices, and
more cost-effectively. Due to the heavy reduction in parameters, carbon emissions
have decreased exponentially. We also found out that changing depth between 4 to
8 did not significantly affect the results. Adding a second recurrent block, however,
improved the performances by a good margin.

With recurrent neural networks being rather uncommon in the field of image clas-
sification, we are exploring a relatively new venture that has room for massive im-
provements in future.

Due to time and money constraints, experimentation was limited. Experimenting
with parameters such as optimizers, learning rate, loss function, and a higher num-
ber of epochs would have improved the performance. Because the author of this
project is relatively new to research and in the field of AI, some key findings were
missed, such as rounding off the accuracy values during training and testing. This
means we missed out on a small portion of precision due to not having decimal places.
F1 scores were averaged for all the 10 classes. In the future, there is room for exper-
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imentation in how the model is designed. Experiments can be done in design choices
and parameters. Hypertuning the parameters could give more optimal results. Early
stop algorithms can be used to automatically stop the training when the learning
converges for more efficient use of time and energy.

Overall, the ultimate goal of this project was to create more environment-friendly,
less energy-efficient and time-consuming Al models with significantly lower number
of parameters but still give relatively competitive accuracy in the field of image
classification with the use of recurrent neural networks. Our work shows that it is
indeed possible and there is room for massive improvements in the performance in
the future with further experimentation.
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Appendix
CIFAR-10 - Accuracy Test

accuracy_test

Figure 7.1: CIFAR-10: Test Accuracy (Architecture One)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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accuracy_test

Figure 7.2: CIFAR-10: Test Accuracy (Architecture Two)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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CIFAR-10 - Accuracy Train

accuracy_train

Figure 7.3: CIFAR-10: Train Accuracy (Architecture One)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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accuracy_train

\
Alt + Scroll to Zoom

Figure 7.4: CIFAR-10: Train Accuracy (Architecture Two)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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CIFAR-10 - Loss

Loss/train

Figure 7.5: CIFAR-10: Loss (Architecture One)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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Loss/train

Figure 7.6: CIFAR-10: Loss (Architecture Two)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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CIFAR-10 - F1

F1 Score

/K
1)

20 40 60 80 120 160 180 ;7

100 140

Figure 7.7: CIFAR-10: F1 (Architecture One)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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F1 Score

Figure 7.8: CIFAR-10: F1 (Architecture Two)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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CIFAR-10 - Precision

Precision

Figure 7.9: CIFAR-10: Precision (Architecture One)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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Figure 7.10: CIFAR-10: Precision (Architecture Two)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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CIFAR-10 - Recall

Recall

Figure 7.11: CIFAR-10: Recall (Architecture One)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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Recall

Figure 7.12: CIFAR-10: Recall (Architecture Two)
Legend : Depth-4, Depth-5, , Depth-7, Depth-8
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SVHN - Accuracy Test

accuracy_test

Figure 7.13: SVHN: Test Accuracy (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, ,
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accuracy_test
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Figure 7.14: SVHN: Test Accuracy (Architecture Two)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8,

92



SVHN - Accuracy Train

accuracy_train

Figure 7.15: SVHN: Train Accuracy (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7,
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accuracy_train

Figure 7.16: SVHN: Train Accuracy (Architecture Two)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8,
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SVHN - Loss

Loss/train

Figure 7.17: SVHN: Loss (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7,
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Loss/train

Figure 7.18: SVHN: Loss (Architecture Two)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8,
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SVHN - F1

F1 Score

Figure 7.19: SVHN: F1 (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7,
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F1 Score

Figure 7.20: SVHN: F1 (Architecture Two)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8,
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SVHN - Precision
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Figure 7.21: SVHN: Precision (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7,
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Precision

Figure 7.22: SVHN: Precision (Architecture Two)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8,
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SVHN - Recall

accuracy_test

Figure 7.23: SVHN: Recall (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7,
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Recall

Figure 7.24: SVHN: Recall (Architecture Two)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8,

62



MNIST - Accuracy Test

accuracy_test

Figure 7.25: MNIST: Test Accuracy (Architecture One)
Legend: Depth-4, , Depth-6, Depth-7, Depth-8
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Figure 7.26: MNIST: Test Accuracy (Architecture Two)
Legend: Depth-4, , Depth-6, Depth-7, Depth-8
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MNIST - Accuracy Train

accuracy_train

Figure 7.27: MNIST: Train Accuracy (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8
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accuracy_train

Figure 7.28: MNIST: Train Accuracy (Architecture Two)
Legend: Depth-4, , Depth-6, Depth-7, Depth-8
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MNIST - Loss

Loss/train

Figure 7.29: MNIST: Loss (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8
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Loss/train

Figure 7.30: MNIST: Loss (Architecture Two)
Legend: Depth-4, , Depth-6, Depth-7, Depth-8
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MNIST - F1

F1 Score

Figure 7.31: MNIST: F1 (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8
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Figure 7.32: MNIST: F1 (Architecture Two)
Legend: Legend: Depth-4, , Depth-6, Depth-7, Depth-8
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MNIST - Precision

Precision

Figure 7.33: MNIST: Precision (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8

71



Precision

Figure 7.34: MNIST: Precision (Architecture Two)
Legend: Depth-4, , Depth-6, Depth-7, Depth-8
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MNIST - Recall

accuracy_test

Figure 7.35: MNIST: Recall (Architecture One)
Legend: Depth-4, Depth-5, Depth-6, Depth-7, Depth-8
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Recall

Figure 7.36: MNIST: Recall (Architecture Two)
Legend: Depth-4, , Depth-6, Depth-7, Depth-8
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